i [JAVA SERIALIZATION: PRACTICES
THAT WON’'T BITE YOU LATER

1/ Keep classes opt-in

2/ Shape the byte format yourself

3/ Lock down deserialization

4/ Avoid readResolve tricks when an enum will do

5/ Reach for the serialization-proxy pattern for robust, future-proof code

1/ Keep classes opt-in

¢ Don’t make everything Serializable by default. Only the few types that truly need Java’s native
byte-stream format should implement it.

e Avoid putting Serializable on base classes or widely reused abstractions. If a superclass is

serializable, all subclasses become serializable—even when that’s unsafe (e.g., they hold sockets,

threads, caches, keys).

e Create dedicated, stable “snapshot” types (DTOs/value objects) for serialization instead of
exposing rich domain objects.

Why this matters

e Reduces your attack surface during deserialization.
e Prevents accidental leakage of fields into the wire format.

e Keeps you free to refactor most classes without worrying about serialVersionUID and format
compatibility.

A quick pattern
// Not serializable: rich domain object with invariants and live refs
final class OrderService {
private final Executor executor;
Y/
}

// Opt-in: minimal, immutable snapshot meant for the wire
final class OrderSnapshot implements java.io.Serializable {
private static final long serialVersionUID = 1L;
private final String id;
private final int quantity;
private void readObject(java.io.ObjectinputStream in) throws Exception {
in.defaultReadObject();
if (id == null || quantity < 0) throw new InvalidObjectException("Invalid snapshot");
}
}

Rules of thumb

e Implement Serializable sparingly and only on types with a stable external form.

e Keep rich domain/services non-serializable; convert to a snapshot/DTO when you truly need
serialization.

e If you inherit from a serializable parent but want to block it, you can add a readObject that
throws InvalidObjectException.

e Prefer other formats (JSON/Proto) for system boundaries; use Java serialization only when you
control both ends and need it.

That’s “opt-in”: serialization is an explicit decision per type, not the default.

2/ Shape the byte format yourself

don’t let default Java serialization decide what goes on the wire. Explicitly define what is serialized, how,
and how it’s read back so you control compatibility, security, and invariants.

Here are the practical ways to do it:

Whitelist the fields (not all of them)

e Use serialPersistentFields to pick exactly which logical fields are serialized—ignoring caches,
keys, or derived data.

private static final ObjectStreamField[] serialPersistentFields = {
new ObjectStreamField("id", String.class),

new ObjectStreamField("qty", int.class)
A

Write a custom external form

e Implement writeObject / readObject to serialize a stable, minimal representation (not your raw
fields).

e Use PutField/GetField for versioning with safe defaults.
private void writeObject(ObjectOutputStream out) throws |OException {
ObjectOutputStream. PutField fields = out.putFields();
fields.put("id", this.id);
fields.put("qty", this.quantity);

// don’t serialize derived or sensitive fields

out.writeFields();
}
private void readObject(ObjectinputStream in) throws IOException, ClassNotFoundException {
ObjectinputStream.GetField fields = in.readFields();
this.id = (String) fields.get("id", null);
this.quantity = fields.get("qty", 0);
// Defensive checks (shape + validate)
if (id == null | | quantity < 0) throw new InvalidObjectException("Bad data");

}

Use writeReplace / readResolve when appropriate

e writeReplace lets you convert your object to a simpler carrier before it’s serialized.

e readResolve lets you replace the just-deserialized object with a canonical instance (but prefer
enums for true singletons).

private Object writeReplace() throws ObjectStreamException {

return new Snapshot(this.id, this.quantity); // a tiny DTO

}

Prefer the Serialization Proxy pattern for invariants

e Serialize a small immutable proxy that knows how to rebuild the real object—this is the cleanest
way to “shape” your format and keep invariants intact.

private Object writeReplace() { return new Proxy(this); }

private Object readObjectNoData() throws InvalidObjectException { throw new
InvalidObjectException("no data"); }

private static class Proxy implements Serializable {

private static final long serialVersionUID = 1L;

final String id; final int qty;

Proxy(MyType src) { this.id = src.id; this.qty = src.quantity; }

private Object readResolve() throws ObjectStreamException {
// reconstruct with validation
return MyType.of(id, qty);

M}

Version consciously

e Keep a serialVersionUID.
e When adding fields later, use GetField#tget("newField", default) to remain backward compatible.

e Never depend on field order or nonessential internal details.

Why this matters

e Prevents accidental field leakage and sensitive data exposure.

e Gives you forward/backward compatibility knobs.

e Lets you validate during deserialization and enforce invariants.

e Minimizes attack surface vs. default, “whatever-is-there” serialization.

In short: by shaping the byte format, you’re declaring a deliberate, stable contract—rather than letting
the JVM serialize your object’s guts by default.

3/ Lock down deserialization

treat deserialization as hostile input and actively constrain what the JVM is allowed to create and how
your objects are rebuilt.

Here’s how to do it, practically:

PRINCIPLES

e Never deserialize untrusted data if you can avoid it; prefer JSON/Proto/etc.

e Assume attackers control the byte stream. Validate everything and whitelist what’s allowed.

HARDEN THE PIPE (WHAT MAY BE CREATED)

= Use JEP-290 Object Input Filtering (Java 9+): allowlist classes, cap sizes/depth, block risky packages.
ObjectinputStream ois = new ObjectinputStream(in);
ois.setObjectinputFilter(ObjectinputFilter.Config.createFilter(

"com.acme.model. *;java.base/*;maxdepth=20;maxrefs=10_000;maxbytes=5M,reject:*"
));
Or system-wide:
-Djdk.serialFilter=com.acme.model. *;java.base/*;maxdepth=20;reject:*

* Custom ObjectinputStream (older JDKs / extra control):

class WhitelistingOIS extends ObjectinputStream {
WhitelistingOIS(InputStream in) throws IOException { super(in); }

@Override protected Class<?> resolveClass(ObjectStreamClass desc) throws |IOException,
ClassNotFoundException {

String name = desc.getName();
if (Iname.startsWith("com.acme.model.") && !name.startsWith("java.")) {
throw new InvalidClassException("Rejected: " + name);
}
return super.resolveClass(desc);
}
}

HARDEN THE OBJECT (HOW IT’S REBUILT)

» Defensive readObject: validate invariants, ranges, nullability; rebuild defensive copies of mutable
inputs.

private void readObject(ObjectinputStream in) throws IOException, ClassNotFoundException {
ObjectinputStream.GetField f = in.readFields();
this.id = (String) f.get("id", null);
this.items = List.copyOf{((List<?>) f.get("items", List.of()));
if (id == null | | id.isBlank() | | this.items.size() > 1000) {
throw new InvalidObjectException("Invalid state");
}
}

= Mark sensitive/derived fields transient (keys, caches, sockets, threads). Recompute them post-
deserialization.

= Prefer the Serialization Proxy pattern to preserve invariants and shrink the attack surface:
e writeReplace() - return a small immutable proxy
e Proxy’s readResolve() = reconstruct via validated factory
* Forbid deserialization entirely for types that must never be created from a stream:
private void readObject(ObjectinputStream in) throws InvalidObjectException {

throw new InvalidObjectException("Deserialization not allowed");

}
private void readObjectNoData() throws InvalidObjectException {

throw new InvalidObjectException("No-data deserialization not allowed");

}
INSTANCE CONTROL & IMMUTABILITY

= Use enum for singletons/fixed sets (built-in safe deserialization).
» Make fields final where possible and reconstruct through validated constructors/factories.

LIMIT BLAST RADIUS

= Cap size/depth/refs/bytes via filters to prevent DoS payloads.
= Keep the serializable surface small and explicit (serialPersistentFields, custom writeObject).
= Avoid mixing rich domain objects with serialization; use DTO/snapshots.

CHECKLIST
e s Java serialization really necessary here?
e Filter configured (per-stream or global)?
e readObject validates & copies defensively?
e Sensitive fields transient?
e Proxy pattern used for complex invariants?
e Enums instead of readResolve for singletons?

That’s “locking it down”: tightly control what can be instantiated and how state is restored, with
validation at every step.

4/ Avoid readResolve tricks when an enum will do

Avoid readResolve “singletons” when an enum gives you the same instance-control with fewer foot-
guns.

Why?

¢ readResolve is manual and fragile. You must write it exactly right, forever, across versions. Miss
it or change signatures and serialized data can create new instances, breaking singletons or
invariants.

e Edge cases. readResolve doesn’t protect against all creation paths (e.g., careless cloning, custom
deserialization code, mistakes in subclasses). You're relying on convention.

e enum makes it bulletproof. Java’s spec guarantees one instance per enum constant per
classloader. Serialization is handled by name; the JVM ensures you get the same instance back—
no custom code required. Reflection can’t instantiate extra enum constants.

Compare
Singleton with readResolve (easy to get wrong):
public final class Config implements java.io.Serializable {
private static final long serialVersionUID = 1L;
public static final Config INSTANCE = new Config();
private Config() {}
private Object readResolve() {
// Must be present and correct or deserialization breaks singleton
return INSTANCE;
}
}

Pitfalls: must keep serialVersionUID, ensure constructor stays private, block cloning, keep readResolve
correct; any slip can yield multiple instances.

Singleton with enum (the safe default):
public enum Config {

INSTANCE;
// fields, methods, whatever
}

Benefits: true one-instance semantics, safe serialization by default, simple and self-documenting.

Beyond singletons

e Ifyou need a fixed set of canonical instances (e.g., LOW, MEDIUM, HIGH), enums are ideal: they
are the instance-control mechanism.

e If you need unbounded instance control (e.g., value objects with many possible states), enums
won’t fit; prefer the Serialization Proxy pattern to preserve invariants during deserialization
instead of relying on readResolve.

Rule of thumb

e Singleton or small, closed set of instances? - use enum.

e Complex or unbounded instances with invariants? - use a Serialization Proxy, not
readResolve.

That’s the idea: enums give you built-in, correct-by-construction instance control, while readResolve is
a delicate workaround you can avoid.

5/ Reach for the serialization-proxy pattern for robust,
future-proof code

What it is

The serialization-proxy pattern means you don’t serialize the real object at all. Instead, you serialize a
small, immutable proxy that captures just the logical, validated state. On deserialization, the proxy
rebuilds the real object via a safe constructor/factory.

Why it’s better
e Stronger invariants: Only a minimal, validated state crosses the wire; no half-built objects.
e Defense-in-depth: Fewer attack surfaces than readObject on the main class.
e Versioning friendly: You control the external form; adding fields becomes manageable.

¢ Final fields stay final: The real object is constructed normally, not mutated in-place by
deserialization.

Minimal template

public final class Money implements java.io.Serializable {

private static final long serialVersionUID = 1L;

private final String currency; // 1SO code

private final long minorUnits; // cents

private Money(String currency, long minorUnits) {
if (currency == null | | currency.length() != 3) throw new lllegalArgumentException("bad currency");
if (minorUnits < 0) throw new lllegalArgumentException("neg amount");

this.currency = currency.toUpperCase();

this.minorUnits = minorUnits;

public static Money of(String currency, long minorUnits) {
return new Money(currency, minorUnits);

}

// --- Serialization proxy hook: never serialize the real object ---

private Object writeReplace() { return new Proxy(this); }

// If someone tries to deserialize directly, forbid it.

private void readObject(java.io.ObjectinputStream in) throws java.io.InvalidObjectException {
throw new java.io.InvalidObjectException("Use proxy");

}

private void readObjectNoData() throws java.io.InvalidObjectException {

throw new java.io.InvalidObjectException("No data");

}

// --- The proxy that actually gets serialized ---

private static final class Proxy implements java.io.Serializable {
private static final long serialVersionUID = 1L;
private final String currency;

private final long minorUnits;

Proxy(Money m) {
this.currency = m.currency;

this.minorUnits = m.minorUnits;

}

// Reconstitute the real object with validation
private Object readResolve() throws java.io.ObjectStreamException {
return Money.of(currency, minorUnits);
}
}
}

How it works (flow)
1. writeReplace() returns new Proxy(real) = only proxy goes on the stream.
2. Proxy’s fields are tiny, immutable, validated.

3. Oninput, proxy’s readResolve() calls your factory/constructor, rebuilding a correct Money.

When to use it

e Classes with nontrivial invariants (e.g., ranges, cross-field rules).
e Immutable value objects that must remain final and consistent.
e Types likely to evolve (add/remove fields) but need backward compatibility.

e Any time readObject would be long/fragile—prefer a proxy.

When not to

e Trivial DTOs with flat, stable state (custom writeObject/readObject may suffice).

e Performance-critical hot paths where the extra proxy hop is proven costly (rare).

Versioning tips
e Keep the proxy as your stable external form.

e Add new proxy fields with safe defaults (GetField#get("field", default)) if you later drop custom
code in; with the pure proxy pattern, you usually just add new final fields and handle them in the
factory.

e Maintain serialVersionUID on the proxy class.

Quick checklist

e Does the main class implement Serializable? Yes, but only to expose writeReplace.

e Isdirect deserialization blocked? Yes (readObject, readObjectNoData throw).
e Isthe proxy static, private, immutable, and minimal?

e Does readResolve() call a validating factory/constructor?

e Areinvariants enforced only in one place (the factory)? «

That’s the serialization-proxy pattern: smaller surface, safer invariants, cleaner evolution.

TAKEAWAYS

» Treat deserialization as input validation, not a free constructor.
= Shape and version your byte format deliberately.

= Enums > readResolve for true singletons.

= Serialization Proxy = safer, cleaner, future-ready design.

